
Automatic Retrieval of Similar Content
Using Search Engine Query Interface

Ali Dasdan, Paolo D’Alberto, Santanu Kolay, and Chris Drome
Yahoo! Inc

Sunnyvale, CA, USA
{dasdan,pdalbert,santanuk,cdrome}@yahoo-inc.com

ABSTRACT
We consider the coverage testing problem where we are given
a document and a corpus with a limited query interface and
asked to find if the corpus contains a near-duplicate of the
document. This problem has applications in search engines
for competitive coverage testing. To solve this problem, we
propose approaches that work in three main steps: gener-
ate a query signature from the document, query the corpus
using the query signature and scrape the returned results,
and validate the similarity between the input document and
the returned results. We discuss techniques to control and
bound the performance of these methods. We perform large-
scale experimental validation and show that these methods
perform well across different search engine corpora and doc-
uments in multiple languages. They also are robust against
performance parameter variations.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Pro-
cess

General Terms
Algorithms, Experimentation, Measurement

Keywords
Coverage, keyword extraction, random sampling, strong query,
query generation

1. INTRODUCTION
Consider the following problem that often occurs during

competitive testing of search engines. A human judge is
given a document and its URL and is asked to find out if
a public search engine has the content. If she searches for
the URL and the search engine fails to return the exact
URL, then she is faced with two issues: (1) How can she

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

surface the content through the standard query interface?
and (2) Does any of the returned results contain similar
content? For the first issue, she can query the search engine
using queries generated from the content, e.g., using the
title. For the second issue, she can validate the returned
results by performing a side-by-side visual comparison. This
is potentially an error-prone, tedious, and labor-intensive
process. The situation gets more serious when the problem
involves thousands of URLs. To rectify this situation, we
propose an approach that automates query generation and
content similarity validation, and removes subjectivity.

The problem above is an instance of the coverage test-
ing problem [14] in which we are given a document like a
web page and a corpus of documents with a standard public
query interface like a search engine. The goal is to deter-
mine if the corpus contains a near-duplicate of the input
document. This problem commonly occurs in practice when
performing competitive coverage testing of search engines
and validating the document indexing process. For example,
when the coverage testing is performed over a large number
of new URLs, the results provide a coverage metric on how
much of the new content on the Web a target search engine
acquires. By repeating this test often enough, the results
can also provide a latency metric on how long it takes for
the search engine to reach a certain threshold of coverage.

An illustration of the coverage testing problem is shown
in Fig. 1. The original document is a fairly new blog entry
about the CEO of Facebook using Twitter. A simple cover-
age test in this case is to see if a target search engine already
has this content. As shown on the left-bottom part of this
figure, this test fails. However, it is incorrect to conclude
from this check alone that the search engine does not have
the content at all. In fact, as shown on the right side, the
search engine does have the content, actually under more
than one URL, only two of which are shown. This example
shows the importance of content check for coverage testing.

The complexity of the coverage testing problem is exacer-
bated by the size of the corpus, the number of input docu-
ments to test, time sensitivity, the heterogeneity of the cor-
pus and documents in terms of language, encoding, struc-
ture, and variety of other aspects. As a result, the coverage
testing problem is a difficult problem, and it subsumes in-
teresting subproblems, as discussed next.

To solve the coverage testing problem for an input docu-
ment (already retrieved) and a target search engine, the fol-
lowing template flow, which we refer to as the strong query
maker (SQM), can be used: (1) generating a query signa-

701

Figure 1: The motivation for content check: The comparison of URL and content searchers for the “original
document”. For this document, the target search engine does not have its URL but does have its content
under more than one URL. In other words, the URL search fails whereas the content search succeeds.

ture from the document, (2) querying the target search en-
gine and scraping for the URLs in the search results page,
(3) downloading the content of each scraped URL from the
Web, and finally (4) verifying the similarity between the
input document and each document downloaded. This tem-
plate is similar to another one, independently proposed in
[25] for the problem of catching plagiarism from web docu-
ments.

In this template flow, the last and first steps are inter-
esting problems themselves and are the ones where various
approaches have been proposed in the literature. The last
step is equivalent to the document similarity detection prob-
lem; for its solution, multiple similarity measures or methods
exist, e.g., see [6, 13] for the original proposals and [17, 21]
for their large-scale experimental comparison. In this paper,
this problem is out of our scope as we want to focus on the
entire flow and its first step. For our similarity detection,
we simply use the shingling approach of [6].

The first step of the template flow where a query from the
input document needs to be generated is the most important
as the chance of finding another document similar to the
input document depends on the quality of the generated
query. To emphasize this point just made, we refer to this
step as the generation of a query signature from the input
document, or the query generation problem.

Generating queries from an input document has been stud-
ied in many different contexts, which we review in detail in
Section 2. For our work, we first adapted an approach pro-
posed in [25] in which the least frequent k terms from the
input document for some small k are selected as a query sig-
nature. Other approaches that involve term frequencies or
functions derived from them are proposed in [3, 15, 20, 30]
for different but related problems. We will refer to this ap-
proach of using the least frequent terms as the least-frequent-
terms (LFT) approach.

The disadvantage of the LFT and similar frequency-based
approaches is their dependence on a language-based lexicon.
Without a privileged access to a search engine, creating and
maintaining such a lexicon is almost impossible, e.g., see
[4] for an example of the work involved. In our search for
a simpler approach without this dependence, we were able
to propose a new, randomized approach that can generate
a query signature from an input document using the doc-
ument content alone. In this approach, we simply select a
random sequence of k terms from the input document as
the query signature. In the actual implementation as will

be discussed in Section 4.1, the selection is slightly more in-
volved to guarantee repeatability, i.e., to generate the same
query signature for the same input document, but the ap-
proach is very simple to implement. We will refer to this new
approach as the random-sequence-of-terms (RST) approach.

Our large-scale experiments over two major search en-
gine corpora and over 40+ markets with many different lan-
guages show that the RST approach outperforms the LFT
approach. This conclusion was also validated by human
judges. This is a really good result due to the practical-
ity of the RST approach, i.e., being simpler and lexicon-
independent. It seems that this difference in performance
is due to two advantages of the RST approach: randomiza-
tion and proximity-preserving. Since the value of random-
ization is well-known, e.g., see [23], we focus on the latter
advantage. The RST approach preserves the proximity of
the query terms by insisting on the selection of consecutive
terms from the input document. In contrast, the LFT ap-
proach can select terms from all over the input document.
To see the power of proximity-preserving, consider the fol-
lowing example: To get the CIKM2009 home page in the
top ten results of each of the top three major search en-
gines, it is enough to submit the query “The purpose of the
conference is to identify”without the quotes even though the
terms “purpose”, “conference”, and “identify” are fairly com-
mon, and the query does not contain terms strictly specific
to CIKM2009 like “CIKM”.

Overall, we make the following contributions in this paper:

• We propose a new approach to query signature gen-
eration from an input document. The new approach
is simpler than the previous approaches in that it can
work for documents in many languages and without
the need for a lexicon or privileged access to search
engine corpora. The new approach performs very well
and is robust under different parameter settings. Our
theoretical analysis of performance also validates our
intuition about performance tradeoffs.

• We extend a well-known search quality metric, called
the Discounted Cumulative Gain (DCG) [18], to mea-
sure the results of our comparison. The extension al-
lows us to consider the effect of document ranking,
resulting in a single number as the comparison result.

• We have performed experiments over thousands of doc-
uments from over forty markets with many languages.
We have also created a lexicon of over 22 Million terms

702

from a sample of 244 Million web pages, sifting through
140 Billion terms in the process. To the best of our
knowledge, these experiments are the largest scale to
date for the coverage testing and related problems. For
example, a few thousand documents mostly in the Por-
tuguese language were used in [25].

The rest of the paper is organized as follows. Section 2
introduces the prior work in the literature. Section 3 for-
malizes the coverage testing problem. Section 4 describes
the template flow with all its steps discussed in detail. Sec-
tion 5 proves bounds on the performance of the proposed
flow. Section 6 discusses the implementation and experi-
mental methodology. Section 7 details the experiments and
results, showing evidence that the proposed flow and ap-
proaches work very well. Section 8, concludes this paper
and suggests some future work.

2. RELATED WORK
We discuss the related work under the query generation

and similarity detection groups.
On query generation. In the literature, according to

Swanson [28], Luhn [19] is the first to propose a method of
summarizing a document by creating an abstract for index-
ing and search [2, 20]. His abstracts contained full sentences
extracted from the document, thereby taking advantage of
term proximity. Furthermore, the sentences were selected
based on their containing significant terms of the document.
Here significant terms refer to those terms which had neither
low nor high frequency in the term lexicon.

Thirty years later and independent of Lunh’s paper, Bharat
and Broder [3] proposed a similar frequency based method to
determine the relative size and overlap of search engines us-
ing representative queries extracted from a lexicon (Yahoo!
Directory). These queries were referred to as strong queries
because they were assumed to be strong enough to uniquely
represent the documents they were generated from. We also
adopt this term for query signatures. For more recent work
built upon this method, see [1, 7].

In both approaches in [3] and [19], a strong query from
an input document is created by selecting terms whose fre-
quency is neither too high nor too low. The high end is
rejected to reduce the number of documents matching the
strong query and the low end is rejected to eliminate spelling
errors. Note that since we want to identify at least a single
document similar to the input document, these approaches
do not apply to the coverage problem directly as we can
make the query stronger by moving towards the terms at
the low end of the frequency spectrum.

Some other approaches for generating query signatures
have been proposed in the literature. These approaches can
be adapted to solve the coverage testing problem although
they are originally proposed for other related problems.

Ghani et al. [15] propose approaches for the problem of
creating a corpus for a minority language. Their approaches
include selecting k tokens uniformly randomly, selecting the
most frequent k tokens, and selecting the top k tokens using
their tf-idf scores. Note that the tf-idf score of a term is a
standard IR metric and corresponds to a combination of its
frequency in a single document and over all documents in a
corpus. For more information on the tf-idf scores, see [12]
or other standard IR references.

Pereira and Ziviani [25] study the problem of finding doc-

uments from which a suspicious document may be plagia-
rized. Their approaches include selecting the most frequent
k tokens and selecting equal number of tokens before and af-
ter an anchor token. Possible anchors are the most frequent
tokens, the least frequent tokens, every ith token for some
i, and the most unique tokens (using idf scores, over all the
documents over the corpus).

Yang et al. [30] introduce the problem of cross-referencing
blog content on the Web. Their main approach includes
selecting the top k phrases where each phrase is scored by a
linear combination of the tf-idf or mutual information based
scores of its terms. They also discuss how to improve their
results by using the hyperlinks in the Wikipedia corpus.

In many of these approaches, the ordering by token scores
can be done deterministically or probabilistically [15]. In
the latter case, the probability of selecting a token becomes
proportional to its score. Moreover, ties can be broken by
selecting longer tokens [25].

On document similarity detection. The previous ap-
proaches for similarity detection are studied under the prob-
lems that have been usually referred to as the near-duplicate
detection or copy detection problems.

The first automatic detection mechanism for copy detec-
tion in large digital libraries is SCAM [5, 26, 27]. The
idea is to represent a document as a probability distribu-
tion function (PDF); that is, a tuple of term and relative
frequency. The similarity function is based on a comparison
of the PDFs.

The PDF is a common representation for documents, how-
ever it has three drawbacks: it is not necessarily compact
(i.e., it can be of the size of the original document), PDF
comparisons have a complexity that is linear to the size of
the PDF (and there are a quite few [24]), and finally, by
construction the PDF does retain no information about the
proximity of the sentences and terms.

Broder et al. [6, 8, 9, 10, 11] and Charikar [13] developed
strong theoretical techniques for solving the near-duplicate
detection problem. In effect, Broder et al. were able to re-
duce the duplicate detection problem to a set intersection
problem, by using a sequence of tokens (shingles) to repre-
sent the content of a document. By contrast, Charikar used
random projections to reduce the near-duplicate problem to
one of determining the overlap of two high-dimensional vec-
tors in the term space.

Recently, powerful estimates of the Jaccard Index have
been proposed (e.g., [22, 29]) especially by searching a better
sampling approach.

Henzinger [17] and Manku et al. [21] present experimen-
tal comparisons between Broder’s and Charikar’s approach,
and concludes that Charikar’s approach has usually better
performance.

Our work in perspective. We build upon the develop-
ments laid down in the literature. For query generation, our
randomized approach seems to be new. We also adapt one
of the best previous approaches for comparison [25]. Note
that although there have been many frequency-based ap-
proaches for query generation, the paper [25] seems to be
the first for explicitly stating the use of the least frequent
terms for query generation. For similarity detection, we use
the shingling method of [6] simply because it performs well,
we had a working implementation of it in our experimental
environment, and we had to use the same method for a fair
comparison of the query generation approaches.

703

2. Make Strong Query

3. Scrape SEs

Web page with URL

1. Generate Signature

Web page or copy found/not found

Crawl Page

4. Compare Signatures

Content Search

Figure 2: Strong Query Maker (SQM) flow. The
output web page, if found, is a near-duplicate of the
input page from one of the target SEs.

3. PROBLEM DEFINITION
We define the coverage testing problem as follows.

Problem 1. Consider a corpus D of documents with a
public query interface. Given an input document d, the goal
is to determine if there exists a document d′ in D that is
similar to d using a given similarity measure.

Note that the corpora we target in this paper are search
engine indexes. Their query interfaces are limited mainly in
two ways: the number of terms in a query and the number
of queries sent from the same IP address. As such, our
secondary goal is to minimize both these numbers.

As for the similarity measures, the similarity sim(d, d′)
between d and d′ can be computed using any one of the
similarity measures available in the literature. An example
similarity measure is the Jaccard Index [12]; it measures
similarity between two documents by the ratio of the set of
terms common to both documents to the total set of terms
in both documents. More formally, it is defined by

sim(d, d′) =
|d

T
d′|

|d
S

d′| (1)

where the intersection and union operations are computed
over the terms of the documents. The shingling method of
[6] provides an unbiased estimator for this measure.

4. STRONG QUERY MAKER (SQM)
In this section, we shall describe our template flow in de-

tail. We refer to the flow as well as its implementation in
a tool as the strong query maker (SQM), where the phrase
“strong query” is adopted from [3].

The system and the context, where our strong query maker
is used, is presented in Fig. 2. The system can be used to
perform coverage testing of any search engine with a stan-
dard query interface and, basically, it can also be tailored
to any proprietary platform. In this flow, the search engine
that is queried and scraped is referred to as the target search
engine.

The SQM tool we implemented extends the basic flow with
capabilities to work in a production environment such as the
ability to take in as input a large set of input web pages,
the ability to query any search engine, and the ability to
parallelize its work.

Summary. Consider D and d as in Section 3. Let Rq

represent the set of documents that D returns upon receiv-
ing the query q. Also let Q represent the set of queries q
generated from d. Then, SQM solves the coverage testing
problem by searching for a document d′ in

S
q∈Q Rq such

that sim(d, d′) ≥ θ, where θ is the similarity threshold.
Details. In terms of its interface, SQM takes in a doc-

ument d, which is a web page in this paper, and produces
either another document d′ that is guaranteed to be a near-
duplicate of d or a message saying that no near-duplicates
of d can be found in the target search engine’s index.

SQM performs two types of checks: a URL search and
a content search. The URL search can happen only if the
URL of d is available. Since the URL search is performed as
a speed-up trick to reduce the number of cases to be handled
by the content search, it can safely be ignored.

For the URL search, if the URL is found among the re-
turned search results, then the operation is a success with
the caveat that the target search engine may have a different
version of d. As such, SQM validates if two versions of d are
still near-duplicates and returns success or failure.

The content search is needed only if the URL of d is
not found among the returned search results. Recall that
this does not necessarily mean that the target search en-
gine does not have the content of d because it may cover a
near-duplicate of d under a different URL. As the number
of duplicates on the Web is very large, this is a very likely
scenario.

Now, SQM can perform a content search for d using its
content. Of course, content search would be very easy if
the query interface of search engines could take in the entire
content of d; however, search engines can accept queries with
the number of terms in the lower 10s and may even ignore
most of the terms save a few during ranking. This is the
reason for query generation from d.

Flow. The basic flow of SQM in Fig. 2 can be divided into
five basic steps: retrieving the input document d from the
Web, generating its query signatures, making strong queries,
querying and scraping target search engines, and finally val-
idating for similarity between d and each of the documents
in the search results (after also retrieving these documents
from the Web).

The first step involves fetching the input document from
the Web using a crawler and processing it in a format that
enables the following steps. To speed up this step, we may
consult an existing production crawler, if this task is done
inside a search engine, to see if it has already crawled the
page. If the crawled version is too old, it may be a good
idea to re-crawl the page using the dedicated crawler shown
in Fig. 2.

We next analyze each step of the SQM flow in a separate
subsection. In the sequel, for simplicity, we will assume that
we are querying a single target search engine for d.

4.1 Generating Signatures
The goal of this step is to generate a textual signature

of the input document. This step takes in d with its URL
and produces a textual signature of d. Signatures, which

704

can be numeric or textual, form the basis of strong query
generation as well as near-duplicate checking.

Numeric signature. This step assumes that the docu-
ment d has already been converted into a sequence of tokens
where each token corresponds to a term in d. In the litera-
ture, there are two major approaches to produce a numeric
signature out of this sequence, the shingling approach pro-
posed by Broder et al. [11] and the random projection based
approach proposed by Charikar [13]. In SQM, we used the
shingling approach but we do not see any fundamental diffi-
culty towards working with the other approach (or any other
similarity detection measures).

If the token sequence of d contains |d| tokens, the shingling
approach produces a number, called a shingle, for every sub-
sequence of k tokens using Rabin fingerprints [8], resulting
in a total of |d| − k + 1 shingles. Then, the numeric signa-
ture with respect to this set of shingles can be the minimum
m shingles. By repeating this process using multiple finger-
printing functions, the numeric signature can be made more
robust. For simplicity, we will assume that a single finger-
printing function is used to produce a numeric signature
with m shingles.

Textual signature. Query generation needs a textual
signature of d because a search engine cannot be queried
using shingles or any other numeric signatures unless we
have privileged access to the index of the search engine.

As mentioned in Section 1, for query generation, we used
the LFT approach from [25] and proposed a new approach
called the RST approach. The reasons for selecting the LFT
approach for comparison were threefold: (1) It is a recent
proposal in the literature; (2) It increases query strength by
focusing on the least common terms; and (3) Its implemen-
tation was relatively easier with our existing infrastructure.

The LFT approach. To be able to use this approach, we
needed to have a representative lexicon of terms on the Web
and a way to use it to generate terms from d for its textual
signature. For that, we generated a dictionary of 22M terms
together with their frequencies from a sample of 244M cur-
rent documents, sifting through 140B terms in the process.
We then sorted the terms of d in the increasing frequency
order using the frequencies obtained from the dictionary. Fi-
nally, we generated the first k terms as the query signature
of d from the least frequent side in the sorted order. For
additional queries, we used the next sets of k terms.

The RST approach. For this proposed (RST) approach,
a query signature can be generated by randomly selecting a
set of k consecutive terms from d. Since repeatability is a
requirement for ensuring debuggability in a production en-
vironment, we wanted to generate the same query from the
same document over multiple runs. To manage this, we
piggybacked on the repeatability of the numeric signatures.
In other words, we generated a textual signature of d by
mapping its numeric signature (shingles) back to the term
subsequence it was generated from. Since shingling is a one-
way hash, this is only possible by keeping track of a mapping
between every subsequence of k terms and the shingle gen-
erated from it. Since the minimum operation is associative,
the numeric signature can be updated incrementally so this
mapping uses constant space. Even with multiple finger-
printing functions, this mapping can use space linear in the
number of functions.

Comparison of two approaches. The LFT approach
needs a representative dictionary whereas the RST approach

does not; it works only with the terms in d. This requirement
for the LFT approach is a disadvantage because represen-
tative dictionaries of the Web documents are not publicly
available (except a version from Google for a set of docu-
ments from 2006 [4]), and even when one creates a version,
then it is expensive to keep it up-to-date. Note that access
to a dictionary is, however, an advantage as it can provide
term and document frequencies (as raw frequencies or as
tf-idf).

The RST approach takes advantage of the proximity of the
terms in the textual signature whereas the LFT approach
selects terms based on frequency order so ignores proxim-
ity completely. Since search engines are known to use the
proximity feature in their ranking of documents, proximity-
preservation is an advantage for the RST approach.

Using proximity may also backfire as the subsequences of
terms from d may contain insignificant terms such as stop-
words. However, search engines are also known to remove
stopwords anyway so this is not a serious weakness. We also
suggest as future work a hybrid approach that can actually
combined the LFT and RST approaches.

Other approaches for query generation. Many other
approaches for generating textual signatures have been pro-
posed in the literature, e.g., see [15, 25, 30]. These ap-
proaches are mainly proposed to solve other problems but
may be adapted to the coverage testing problem. It is an
interesting future work to compare all these approaches to-
gether.

4.2 Making Strong Queries
In this step, we use the textual signatures to generate

strong queries. Intuitively, a strong query q generated from
d is a query that uniquely identifies d such that a search
engine that has indexed d will return d when it is queried
with q [3]. In general, the higher the rank of d in the returned
results, the stronger the query q. In practice, the ideal is to
have d in the top-10 returned results or in the first page of
the search results.

In the previous section, we described a way to generate
one textual signature from d. Because of the way they are
generated, they are already strong. By repeating the process
t times with different generated queries, we reduce the error
of SQM.

In this step, we also need to make sure that the generated
queries are in a form that can be submitted to search engines.
For that, we need to tackle two important issues.

Tokenization. In English and some other languages,
terms are separated by spaces and punctuation marks. In
traditional Chinese, there is no use of separators and the
organization in terms is highly contextual. Now imagine
that the language of d is Chinese. The document processor
that processes d uses one way of tokenizing the terms. The
tokenization algorithms used by two search engines A and
B may be different. This creates a problem when a query
generated by A’s algorithm is used to query B’s index. Our
solution to such problems is simple: keep the query with to-
kens as well as generate another query by concatenating the
tokens without any separators. This doubles the number t
of strong queries of d.

Stopwords. As mentioned before, the RST approach is
susceptible to having stopwords such as a, an, and, or in
the textual signatures. These terms are harmless as search
engines will remove them from submitted queries anyway yet

705

they consume precious space in the already short queries.
We also wanted our results to be resilient against any errors
in the stopword removal of our target search engines. In the
end, we decided to simply remove the stopwords from the
generated textual signatures for English.

4.3 Scraping Search Engines
The goal of this step is to query the public query interface

of the target search engine with each query of d, scrape the
r results out of the returned results (where r = 10 for the
first page of results) and aggregate them into a results set.

The search engine may or may not return any results for
one or more of the submitted queries. If the lack of results
is due to an error, we repeated the query after a short delay.
In the end, the process concludes with a final results set. If
the set is empty, it indicates that the target search engine
does not have a near-duplicate of d. This conclusion may
be a false negative but if the target search engine is one
of the major search engines, the rate of a false negative is
small. Moreover, we can make it even smaller as discussed
in Section 5.

4.4 Comparing Documents for Similarity
At this point, we have d and a results set of URLs returned

from the target search engine in response to all the strong
queries of d. The goal of this step is then to validate if d is
covered in the results set.

We first download the web pages for each URL in the re-
sults set using our dedicated crawler. As a side effect of
this downloading, we will also get numeric signatures for
each page. Then, the problem reduces to the well-known
near-duplicate detection problem in which we compare d
against these pages and find out if any of the pages is a
near-duplicate of d using the shingling method. If so, then
SQM in Fig. 2 outputs “found” together with the URL and
numeric signature of the found near-duplicate. If not, the
output from SQM is “not found”.

5. PERFORMANCE BOUNDS
We will show how the performance of SQM depends on

various parameters, some of which we can control and the
rest depend on the corpus. Define a document relevant if it is
similar to the input document, and non-relevant otherwise.

False positive rate. The false positive rate FP measures
the error of reporting “success” (or “found” for SQM) when
none of the retrieved documents are relevant. Note that by
construction, SQM computes the similarity between each
retrieved document and the query document using the sim
measure. Assume the retrieval of r non-relevant documents
and assume that SQM reported that it had found a relevant
document. This can happen only if sim has failed for at least
one of the r retrieved documents, or the complement of the
case where sim has performed correctly for every one of the
r retrieved results. This argument results in the following
result.

Lemma 1. The false positive rate of SQM for r retrieved
results is

FP (SQM) = 1− (1− FP (sim))r ≤ r · FP (sim) (2)

where FP (sim) is the false positive rate of the sim measure.

In the above result, the upper bound is obtained via Bernoulli’s
inequality [16].

This result implies that the performance of SQM depends
highly on the sim measure, which is desirable as SQM can
benefit directly from better similarity measures. On the
other hand, the false positive rate increases with the number
of the retrieved results, hence, the need to minimize this
number.

False negative rate. The false negative rate FN mea-
sures the error of reporting “no success” (or “not found” for
SQM) when the corpus does contain relevant documents.
Assume that the corpus has matched the query q with the
set Dq of documents. Also assume that only c of these doc-
uments are relevant for the target document. Now, by con-
struction, SQM will review only r documents out of Dq.
When none of these r documents are relevant, we get the
false negative rate of SQM for one iteration as

FN(SQM) =

r−1Y
j=0

(1− c

n− j
) (3)

where |Dq| = n. By applying the exponential inequality [16]
to each factor above leads to

FN(SQM) ≤ exp(−c(Hn −Hn−r)) (4)

where Hn is the nth harmonic number and exp(x) = ex

is the exponential function. Using the bounds on the har-
monic numbers and assuming n � r, this inequality further
reduces to

FN(SQM) ≤ (1− r

n
)c (5)

for one iteration. For multiple iterations, assume ni gives the
number of the documents matching the ith query. Then, we
get

FN(SQM) ≤
i=tY
i=1

(1− k

ni
)c (6)

for t iterations. Using the exponential inequality one more
time, we get the following result.

Lemma 2. The false negative rate of SQM for r retrieved
results and t iterations is bounded as

FN(SQM) ≤ exp(−kc

tX
i=1

1

ni
), (7)

which simplifies to

FN(SQM) ≤ exp(−kct/n) (8)

when ni = n for each i.

This result shows that the false negative rate of SQM can
be decreased by acting on four parameters as: increase the
number r of results scraped, increase the number t of iter-
ations, decrease the number n of documents matching the
query, and increase the number c of duplicates.

Among these parameters, changing c is out of our con-
trol; it is also the case that search engines try to reduce the
number of duplicates in their corpora. Adjusting r and t are
trivial. The main difficulty is with the parameter n, hence,
the importance of and focus on generating strong queries for
the target document.

Note that the goal of both the LFT and RST approaches
is to generate as unique a query as possible so that n can
be minimized. For multiple queries, the union of these n’s
needs to be minimized as well.

706

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SE 1 SE 2

Coverage US Market (human judge comparison)

Human Judges Found (SQM did not)

Human Judges and SQM agree

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SE 1 SE 2

Coverage HK Market (human judge comparison)

Human Judges found (SQM did not)

SQM Found (Human Judges did not)

Not‐Found Agreement

Found Agreement

Figure 3: Comparison between SQM and human judges on two search engines using documents from each of
the US market (10,000 documents on the left) and Hong Kong market (1,200 documents on the right).

6. EXPERIMENTAL METHODOLOGY
Next we explain how we set the parameters of the search

space for our experiments to perform a thorough exploration
of the search space and how we measured the quality of the
scraped results using a new metric, adapted from the well-
known Discounted Cumulative Gain (DCG) metric [18].

6.1 Parameters
For our experiments, we had to decide on the instantia-

tion of many parameters. The parameters and our choices
are listed below. For each of these parameters, we also per-
formed sensitivity analyses to validate our value selection as
well as conclusions. In the list below, we also report on some
of these analyses.

• What are the target search engines? We used two ma-
jor search engines through their standard public query
interface. We refer to them as SE1 and SE2.

• How many strong queries to generate for d (the t pa-
rameter)? We suggest 10 strong queries for d after
experiments with t = 5, 10, 20.

• How many top results to scrape from the results re-
turned from the target search engines (the r parame-
ter)? We suggest scraping of only the top-10 results
after experiments with r = 5, 10, 20, 50. This is also
convenient as the first page of search results from ma-
jor search engines contains 10 results.

• How many terms to use per query (the k parameter)?
We suggest 10 terms per query after experiments with
k = 5, 10, 15, 20. Note that typical user queries contain
2-3 terms, so the use of 10 terms helps improve the
uniqueness of the query.

• How many terms per shingle for similarity detection?
We used 10 terms per shingle, more than suggested in
[17]. The choice of 10 terms enables the one-to-one
mapping of shingles to queries.

• How to factor in the rank of a found near-duplicate?
We describe the answer in the next section.

6.2 Results Quality
Given a query for d, we can measure the quality of the

scraped results by the combination of the document ranking
and document matching. We adapt a measure commonly
used for assessing the relevance of the search engine re-
sults pages to an input query: Discounted Cumulative Gain

(DCG) [18], defined as

DCG =

kX
i=1

2rel(URLq,URLi)

log2(1 + rank(URLi))
(9)

where k is the number of URLs scraped, URLq is the input
URL from which the query q is generated, rank(URLi) is
the rank of the URLi in the returned search results, and
the relevance measure rel is further defined numerically and
qualitatively as follows.

rel(A, B) =

8>>>>><>>>>>:

1(bad) if 0 ≤ sim(A, B) < 4

2(fair) if 4 ≤ sim(A, B) < 6

3(good) if 6 ≤ sim(A, B) < 8

4(excellent) if 8 ≤ sim(A, B) < 10

5(perfect) if sim(A, B) = 10

(10)

where sim(A, B) is the Jaccard Index between the terms
of two documents A and B, as defined in Section 3. Note
that the rel measure gets larger proportional to the similar-
ity between its arguments.

Over multiple queries for the input document, the DCG
can be computed in two ways: by averaging over all queries
or by selecting the best DCG over all queries. We give results
for both in the sequel.

7. EXPERIMENTAL RESULTS
We divide this section in four parts: In Section 7.1, we

compare our approach against the coverage testing performed
by human judges; In Section 7.2, we compare our approach
to find documents in SE1 and SE2 that are known to exist
in both indexes; In Section 7.3, we compare both the LFT
and RST approaches on the same set of documents; and fi-
nally, in Section 7.4, we report on the results of parameter
sensitivity experiments.

7.1 Human Judges vs. SQM
In Fig. 3, we show a performance comparison between

SQM with the RST approach and human judges for coverage
testing. The tests were performed on both SE1 and SE2
using 10,000 documents from the US (United States) market
and 1,200 documents from the HK (Hong Kong) markets.

In 90% of the time, SQM and human judges agree on the
“found” and “not found” outcomes. For the US market, hu-
man judges claim to have found more documents than SQM
did. For the HK market, the opposite occurred (SQM found
documents that human judges did not). Regarding the dis-
crepancy, note that human editors could check their judg-
ment only visually whereas SQM can validate its judgments

707

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Br De Fr Hk In It Jp Mx Ru Th Tw Us All

Average common shingles

Markets

 SE 1 top 5 SE 1 top 10 SE 2 top 5 SE 2 top 10

Figure 4: Coverage testing using SQM with the RST
approach over a sample of 12 markets (the x-axis).
The performance is measured in terms of 10 (the
maximum value) minus the average number of com-
mon shingles. Both the top-5 and top-10 results
were scraped. The lower the bar the better the per-
formance.

provably and automatically using near-duplicate detection.
Even if the judges were not convinced with this outcome,
SQM could reduce their workload by at least 90%.

7.2 Coverage
In this section, we show that (1) SQM works consistently

well across different markets, indicating its independence of
the document language; (2) SQM works well with both SE1
and SE2; and (3) Its quality is not very sensitive to the
number of results scraped per query. Here SQM refers to
SQM with the RST approach.

In Fig. 4, we show the coverage testing results for a sample
of 12 markets from different continents and with a mix of
languages. The comparison metric is based on the average
of the common shingles of the most relevant document per
market. The maximum value is 10, and this figure shows the
difference between 10 and the comparison metric. A lower
bar means higher quality result.

The data set was obtained by using queries from the query
logs to scrape SE1 and SE2 for a total of 2,000 URLs per
market. Since the URLs were scraped from their returned
results, they were guaranteed to exist in their indexes. We
then downloaded the content for each of these URLs. After
that, we ran SQM using the downloaded content as input
against SE1 and SE2.

The results in Fig. 4 show that SQM performs very well
independent of content language and the number of results
scraped, which is either 5 or 10.

Effect of ranking. A query signature is stronger if it sur-
faces the target content in top ranks. In Fig. 5, we present a
summary of the best DCG and average DCG over all queries
for input document. Since we had many documents per mar-
ket, each of these DCG values were further averaged over
these documents to reduce them to a single number. The
results in this figure shows that SQM is fairly robust across
these different markets.

Effect of duplicates. As discussed in Section 5, the con-
tent duplicates in a corpus can affect the results. In Fig. 6,

0

5

10

15

20

25

30

35

40

45

Br De Fr Hk In It Jp Mx Ru Th Tw Us All

DCG

Market

Best DCG SE 1 top 10
Best DCG SE 2 top 10
Best DCG SE 1 top 5
Best DCG SE 2 top 5
AVR DCG SE 1 top 10
AVR DCG SE 2 top 10
AVR DCG SE 1 top 5
AVR DCG SE 2 top 5

Figure 5: Best and average DCG measures of SQM
with the RST approach over a sample of 12 markets
(the x-axis). The top and bottom four graphs are
for the best and average DCG, respectively.

we show the effect of duplicates on the DCG measure by
including or excluding them from the documents we use to
compute the final DCG. We computed DCG over documents
with grade excellent or perfect to focus on the most similar
documents.

As this figure shows, duplicates affect SE2 and SE1 dif-
ferently. For both search engines, the results improve with
duplicates excluded but SE2 seems more robust against this
effect.

7.3 The RST vs. LFT Approach
In this set of experiments, we compare the RST and LFT

approaches on the same SQM implementation run over the
same data set. We used the same parameters for both ap-
proaches: we used 10 queries of 10 terms each in the gener-
ated queries.

In Fig. 7, we show 10 minus the common shingles for the
most relevant document, where 10 is the maximum num-
ber of common shingles possible. This figure indicates that
the RST approach outperforms the LFT approach over all
markets and search engines.

7.4 Parameter Sensitivity
In Fig. 8, we show the results of experiments performed to

test the sensitivity of SQM with the RST approach against
varying parameter combinations. The parameters were the
number of terms per query, the number of queries per docu-
ment, and the number of results scraped per document. The
data comes from the HK market and the experiments were
run on SE1.

For these experiments, both the URL and content searches
were performed. The content search is what the RST ap-
proach does.

As one would expect, the URL search returns better re-
sults. The content search also performs well, coming within
12.5% of the URL search performance. Both searches seem
to be almost insensitive to parameter variations, hence, the
robustness of SQM and the RST approach. This figure also
shows that the “10-10 rule” with 10 terms per query and 10

708

0

2

4

6

8

10

12

14

Br De Fr Hk In It Jp Mx Ru Th Tw Us All

DCG

Union DCG SE 1 top 10

Union DCG No‐Duplicate SE 1 top 10

Union DCG SE 1 top 5

Union DCG No‐Duplicate SE 1 top 5
0

2

4

6

8

10

12

14

Br De Fr Hk In It Jp Mx Ru Th Tw Us All

DCG

Union DCG SE 2 top 10

Union DCG No‐Duplicate SE 2 top 10

Union DCG SE 2 top 5

Union DCG No‐Duplicate SE 2 top 5

Figure 6: Effect of duplicates on DCG measure over a sample of 12 markets (the x-axes). Here SQM is with
the RST approach. The left part is SE1 and the right part is SE2.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Br De Fr Hk In It Jp Mx Ru Th Tw Us ALL

Average common shingles

Market

SE 1 LFT SE 2 LFT SE 1 RST SE 2 RST

Figure 7: Comparison of the RST approach with the
LFT approach on both search engines over a sample
of 12 markets (the x-axis). The lower the bar the
better the performance.

queries per document is a good setting as its performance is
almost indistinguishable from the best performance.

8. CONCLUSIONS
In this paper, we addressed the coverage testing problem.

For its solution, we adapted the LFT approach from the
literature and proposed a new approach called the RST ap-
proach. We use each approach for the query generation step
of a template flow and tool called the strong query maker
(SQM). Our theoretical analysis provides guidance on the
performance parameters. Our large-scale experimental vali-
dation over two major search engine corpora and documents
in many different languages shows that the proposed RST
approach outperformed human judges as well as the LFT ap-
proach. It also shows that the proposed approach is largely
insensitive to the parameter variations.

As future work, it is possible to bring the strengths of
these two approaches to a hybrid approach in which both

0

500

1000

1500

2000

2500

3000

3500

4000

4500

q5‐w5 q5‐w10 q5‐w15 q5‐w20 q10‐w5 q10‐w10 q10‐w15 q10‐w20 q20‐w5 q20‐w10 q20‐w15 q20‐w20

N
um

be
r
of
 d
oc
um

en
ts
 w
it
h
gr
ad

e
go
od

 a
nd

 a
bo

ve

qQ‐wM: Q queries with K terms each

SQM 50

SQM 20

SQM 10

URL 50

URL 20

URL 10

Figure 8: Experiments on parameter sensitivity of
SQM with the RST approach. The x-axis varies the
number of terms and queries. The y-axis shows the
good or better documents found. The legend URL N
and SQM N refer to the number N of results scraped
with URL search and content search, respectively.

709

proximity and frequency are considered in query generation.
Such hybrid approaches can also benefit from the other pro-
posals in [25].

Acknowledgments
We greatly appreciate the help from Andrei Broder, An-
drew Tomkins, and Ravi Kumar for the discussions about
the Bharat–Broder approach; Keeyong Han and Ching-Fong
Su for international support; Gene Meyers, Kexiang Hu, and
Sirisha Machiraju for help with the scraping tools; Choong-
soon Chang and Brian Harrington for help with lexicon cre-
ation; Emre Velipasaoglu for help with the DCG-based mea-
sures; and the anonymous reviewers (especially the first re-
viewer) for their comments that helped improve the presen-
tation.

9. REFERENCES
[1] Z. Bar-Yossef and M. Gurevich. Random sampling

from a search engine’s index. J. ACM, 55(5):1–74,
2008.

[2] P. Baxendale. Machine-made index for technical
literature experiment. IBM J. Research and
Development, 2:354–361, October 1958.

[3] K. Bharat and A. Broder. A technique for measuring
the relative size and overlap of public web search
engines. Comput. Netw. ISDN Syst., 30(1-7):379–388,
1998.

[4] T. Brants, A. C. Popat, P. Xu, F. J. Och, and
J. Dean. Large language models in machine
translation. In Proc. Joint Conf. Empirical Methods in
Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pp.
858–867. ACL, 2007.

[5] S. Brin, J. Davis, and H. Garćıa-Molina. Copy
detection mechanisms for digital documents. In Proc.
Int. Conf. Management of Data (SIGMOD), pp.
398–409. ACM, 1995.

[6] A. Broder. On the resemblance and containment of
documents. In Proc. Compression and Complexity of
Sequences (SEQUENCES), page 21. IEEE, 1997.

[7] A. Broder, M. Fontura, V. Josifovski, R. Kumar,
R. Motwani, S. Nabar, R. Panigrahy, A. Tomkins, and
Y. Xu. Estimating corpus size via queries. In Proc.
Int. Conf. Info. and Knowledge Management (CIKM),
pp. 594–603. ACM, 2006.

[8] A. Z. Broder. Some applications of rabin’s
fingerprinting method. In Sequences II: Methods in
Communications, Security, and Computer Science, pp.
143–152. Springer-Verlag, 1993.

[9] A. Z. Broder. Identifying and filtering near-duplicate
documents. In Proc. Symp. Combinatorial Pattern
Matching (COM), pp. 1–10. Springer-Verlag, 2000.

[10] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations
(extended abstract). In Proc. Symp. Theory of
Computing (STOC), pp. 327–336. ACM, 1998.

[11] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Comput.
Netw. ISDN Syst., 29(8-13):1157–1166, 1997.

[12] S. Chakrabarti. Mining the Web. Morgan Kaufmann,
2003.

[13] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proc. Symp. Theory of
Computing (STOC), pp. 380–388. ACM, 2002.

[14] A. Dasdan, K. Tsioutsiouliklis, and E. Velipasaoglu.
Web search engine metrics. Tutorial in Int. Conf.
World Wide Web (WWW), ACM, 2009.

[15] R. Ghani, R. Jones, and D. Mladenic. Automatic web
search query generation to create minority language
corpora. In Proc. of Conf. on Research and Dev. in
Info. Retrieval (SIGIR), pp. 432–433. ACM, 2001.

[16] R. L. Graham, D. E. Knuth, and O. Patashnik.
Concrete Mathematics. Addison-Wesley, 1994.

[17] M. Henzinger. Finding near-duplicate web pp.: a
large-scale evaluation of algorithms. In Proc. of Conf.
on Research and Dev. in Info. Retrieval (SIGIR), pp.
284–291. ACM, 2006.

[18] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[19] H. Luhn. A statistical approach to mechanized
encoding and searching of literary information. IBM J.
Research and Development, 1(4):309–317, 1957.

[20] H. Luhn. The automatic creation of literature
abstracts. IBM J. Research and Development, 2(2),
1958.

[21] G. S. Manku, A. Jain, and A. D. Sarma. Detecting
near-duplicates for web crawling. In Proc. Int. Conf.
World Wide Web (WWW), pp. 141–150. ACM, 2007.

[22] F. D. McSherry, K. Talwar, and M. D. Manasse.
Consistent weighted sampling of multisets and
distributions. U.S. Patent Appl., Sep 2008.

[23] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[24] T. Noreault, M. McGill, and M. Koll. A performance
evaluation of similarity measures, document term
weighting schemes and representations in a boolean
environment. In Proc. of Conf. on Research and Dev.
in Info. Retrieval (SIGIR), pp. 57–76. ACM, 1981.

[25] A. Pereira Jr. and N. Ziviani. Retrieving similar
documents from the Web. J. Web Engineering,
2(4):247–261, 2004.

[26] N. Shivakumar and H. Garćıa-Molina. SCAM: A copy
detection mechanism for digital documents. In Proc.
Int. Conf. Digital Libraries (DL). ACM, 1995.

[27] N. Shivakumar and H. Garćıa-Molina. Building a
scalable and accurate copy detection mechanism. In
Proc. Int. Conf. Digital Libraries (DL), pp. 160–168.
ACM, 1996.

[28] D. R. Swanson. Historical note: Information retrieval
and the future of an illusion. J. American Society for
Information Science, 39(2):92–98, 1988.

[29] Q. Tan, Z. Zhuang, P. Mitra, and C. L. Giles.
Designing efficient sampling techniques to detect
webpage updates. In Proc. Int. Conf. World Wide
Web (WWW), pp. 1147–1148. ACM, 2007.

[30] Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis,
N. Koudas, and D. Papadias. Query by document. In
Proc. Int. Conf. Web Search and Data Mining, pp.
34–43. ACM, 2009.

710

	Introduction
	Related Work
	Problem Definition
	Strong Query Maker (SQM)
	Generating Signatures
	Making Strong Queries
	Scraping Search Engines
	Comparing Documents for Similarity

	Performance Bounds
	Experimental Methodology
	Parameters
	Results Quality

	Experimental results
	Human Judges vs. SQM
	Coverage
	The RST vs. LFT Approach
	Parameter Sensitivity

	Conclusions
	References

